If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=169
We move all terms to the left:
4x^2-(169)=0
a = 4; b = 0; c = -169;
Δ = b2-4ac
Δ = 02-4·4·(-169)
Δ = 2704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2704}=52$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-52}{2*4}=\frac{-52}{8} =-6+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+52}{2*4}=\frac{52}{8} =6+1/2 $
| 33r^2+95-50=0 | | -4(3-t)+8t=0 | | d+12=-5 | | 1.2+c=7 | | 2x+4(x-1)=3(2x+1)-2(x-1) | | 6x-3+5=-10 | | 7x(9x-26)=60 | | ((2x-5)-(2x-5)(x-5))/(x-5)=0 | | (2t-5)(t+2)=0 | | Tn=n2+5n+2 | | 2x+3x=267 | | 3(n+2)=2n+9 | | 12/1.5=x | | (x-2)/(x-5)+(x-3)/(x-5)=2x-5 | | 5e=11e- | | 1.36=2.27−2.32q+q2 | | 3n+75=50+20 | | 11/2*x=-12 | | 17x-2x^2+20=0 | | 2x+(277-x)=360 | | -19+c=51 | | (1/2)(2x-1)=-(1/9)-(4/9) | | 2x+(282-x)=360 | | 2x+(282-2)=180 | | 2(x-7)+(2x+34)=180 | | 2(x-7)+(2x+38)=180 | | -4x+11=-3x+9 | | 2+5x-19+1=-13x+18+9x | | 30t=10t | | 196.63=7(0.05m+20.70+0.20(20.70) | | 3x²-16x=1344 | | -6x^2-54x-24=0 |